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Business Rules are at the
heart of every organization
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Business Rules - An Overview

Separate decision logic from application code

0
< A Write once, use anywhere. Agile rule lifecycle management.

Decision logic defined in business terminology and language
Domain experts directly involved in rule definition and writing.

/ Performance and scalability
From 10 to 1,000,000 rules.
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Decision Management and Automation Value
across industries

Loan Organisation
Credit Decisioning
Sales Advisory
Payments
Accounting

Claims Processing
Underwriting
Quoting

Rating
Commissioning

Automated Trading

Claims Processing

Trade Order Mgmt Entitlement Calc.

Accounting Benefit Calc.

Compliance Fraud Detection

KYC/AML Screening
rr'llnn

Offer Configuration
Order Mgmt

Fraud Detection
Loyalty Programs
Network Monitoring

Promotions Mgmt
Loyalty Programs
Customer Service
Billing

Contract Mgmt

Recommendation
Campaign Mgmt
Order Mgmt
Pricing

Order Mgmt
Billing
Contract Mgmt
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Red Hat automation products

RED HAT'
PROCESS AUTOMATION
MANAGER

PROCESS
MANAGER

COMPLEX
BUSINESS BUSINESS EVENT
OPTIMIZATION RULES PROCESSING

ON-PREMISE
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A pure Java DSL for Drools rules authoring

New in Drools 7
® Automatically generated by maven plugin
EXGCUtable MOdeI ® (Can be embedded in kjar

o Faster compilation
© Backward/Forward compatible
Result result = new Result();

Variable<Person> markV = declarationOf( Person.class ); e Allow for faster prototyping and experiment
Variable<Person> olderV = declarationOf( Person.class );
of new features

Rule rule = rule( "beta" )

.build(
pattern(markV)
.expr("exprA", p -> p.getName().equals( "Mark" ),
alphaIndexedBy( String.class, ConstraintType.EQUAL, 1, p -> p.getName(), "Mark" ),
reactOn( "name", "age" )),
pattern(olderV)

.expr("exprB", p -> !p.getName().equals("Mark"),
alphalndexedBy( String.class, ConstraintType.NOT EQUAL, 1, p -> p.getName(), "Mark" ),
reactOn( "name" ))

.expr("exprC", markV, (pl, p2) -> pl.getAge() > p2.getAge(),
betaIndexedBy( int.class, ConstraintType.GREATER THAN, 0, p -> p.getAge(), p ->

p.getAge() ),
reactOn( "age" )),
on(olderV, markV).execute((pl, p2) -> result.setValue( pl.getName() + " is older than " + p2.getName()))

Ik
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package org.mypackage.myunit;

]
NeW In DrOOIS 7 public static class|AdultUnit|implements RuleUnit {

private int adultAge;

Ru | l ' n itS private DataSource<Person> persons;

public AdultUnit( ) { }

public AdultUnit( DataSource<Person> persons, int age ) {

® Declarative approach to: e
o Partition a rules set into smaller ;
. 4 I
unlts public DataSource<Person> getPersons() {
o Binding datasources to a unit. |, e )
O  Orchestrate the execution of a unit. ( N
public int getAdultAge() {
® Aggregate of a data-source, global | et it
\_ J

variables and rules.
® Better coupling between data and rules

@Override
S (' | S | N = = DS | P (Y public void onStart() {
package org.mypackage.myunit System.out.println(getName() + " started.");
unit AdultUnit e
rule Adult when @Override
$p : Person(age >= adultAge) from persons public void onEnd() {
then System.out.println(getName() + " ended.");
System.out.println($p.getName() + " is adult and greater than " + adultAge); e

end }
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Business Optimizer

J
by
i

Optimize Goals With limited Resources Under Constraints
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Need for Standards in Decision Management space

Decisions are a common language across business, IT and analytic
organizations improving collaboration, increasing reuse, and easing
implementation.

Business analysts wish to model and improve the decisions that their
businesses make.

Common notation which is understandable by all business users.
Standardized bridge between the decision design and implementation.
Usable alongside BPMN business process notation.

Rules are just a portion of the logic needed to make a decision.
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What is DMN?

DMN, which stands for Decision Model and Notation, is a relatively new standard managed by OMG, the
organization behind BPMN. It is trying to do for Business Decision Management what BPMN did for
Business Process Management a decade ago: empower the business to take charge of the logic that

drives its operations, through a vendor-independent diagramming language.

- Bruce Silver, http://methodandstyle.com/what-is-dmn
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DMN Big Picture

DMN in context of BPMN

Collect
application data

—

CIR

Installment calculation

( Product Type , Rate , Term , Amount )

Monthly Fee

Monthly Repayment

Agpiication sk Soore

if Product Type ="STANDARD
then 20.00
else if Product Type ="SPEC

then 25.00
else null

(Amount *Rate/12) / (1 - (3

Decide
routing

Routing = Routing =
DECLINE ACCEPT
Decline Offer
customer produce
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Architecture example

RED HAT' RED HAT'
DECISION DECISION
ER MANAGER
Decmon Central Decision Server(s)

Tools for e
business experts §
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Demo
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RED HAT
DECISION

Demo architecture

== Decision Server(s)

DMN

=— Q >
N ee ili
Services ==

Decision

Account fees m S %

calculation request ﬁ ::_
Account fees
e calculated
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GRAZIE PER PATTENZIONE!

Mario Fusco - Drools Project Lead
Donato Marrazzo - Senior Solutions Architect
Matteo Mortari - Senior Software Engineer
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